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ABSTRACT 

The concept of reggeon field theory (RFT) is applied to particle 

production in the multiregge region. For processes with repeated 

Pomeron (E) exchange we calculate the high-energy behavior of the 

production cross sections un(s) and find that on(s) - eel(s) - Ins 
-516 

for every n. It is then shown that s-channel unitarity constraints are 

respected: in the absence of T-cuts these processes are known to 

violate the Froissart bound (Finkelstein-Kajantie disease). We show 

that the inclusion of ,P -cuts in our RFT model cures this disease, 

provided the ,P -particle-g vertex is not too large. Furthermore, we 

demonstrate that the way in which s-channel unitarity is restored does 

not lead to decoupling problems. Finally, particle production with a 

secondary reggeon exchange is considered. We find that the on(s) have 

qualitatively the same behavior as in the absence of ,P cuts. 
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I. INTRODUCTION 

The problem of formulating a consistent theory that describes 

the high-energy, small momentum transfer limit of hadronic scattering 

and accommodates a. nonvanishing total cross section, has survived 

many attempted solutions. Recently the existence of a strong coupling 

solution in reggeon field theory (RFT)i’ ’ has stimulated a new series of 

investigations, and many facets of RFT have been studied, related to both 

diffractive and nondiffractive properties. 
3 

By their very construction, RFT’s satisfy t-channel unitarity, but 

although they involve multipomeron cuts which have been used in absorptive 

models4’ 5’ ’ to enforce s-channel unitarity, it is not a priori clear that 

they obey all s-channel requirements. In the absence of a complete proof 

of s-channel unitarity, one is led, as a first step, to check whether RFT 

at least satisfies some of the constraints imposed by unitarity. The 

Conventional’Regge pole model has been shown to be inconsistent with 

.unitarity in various inelastic processes, and it is natural to test RFT 

in the very same reactions. Such a test has been performed for the triple- 

Regge region, 
8 and all inconsistencies were found to be removed in RFT? 

In this paper we study another pitfall of Regge pole models, multiparticle 

production processes with repeated Pomeron exchange. It has been known 

for many years 10, 11 that in these processes a Pomeron pole with 

intercept one leads to a violation of the Froissart bound. 
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Our interest in multiparticle production processes is not only 

restricted to the test of s-channel unitarity constraints. One of the major 

problems that have to be addressed, once RFT has been proven to pass 

the most serious tests, is that of how the bare Pomeron and the total cross 

section are built up. Again, a complete answer to this has not yet been 

obtained, but a study of multiparticle production processes may provide 

further insight. 

These are the two issues of this paper. The framework of our 

calculations willbe a RFT whichis based onthereggeon calculus for multiparticle 

production amplitudes derived recently. IL For processes in which only 

Pomerons are involved, our RFT coincides with that used by Migdal, 

Polyakov and Ter-MartirosyanitMPTl, but our formalism is general 

enough to include secondary trajectories as well. Our main interest 

is focused onto the integrated partial cross sections on,(s) rather than 

the production amplitudes T2- , and this, as we will show, requires 

the formulation of a RFT for the un(s 1 directly. In all these calculations 

we use the linear, self-interacting Pomeron pole with renormalized inter- 

cept 1, which has been described in Ref. 2. As it has been shown in Ref. 13 this 

corresponds to the bare intercept being greater than 1. 

In the first part of our paper we study the partial cross sections 

on for multiparticle production with repeated Pomeron exchange. In 

particular, we want to test whether the Pomeron cuts cure the Finkelstein- 

Kajantie disease of the simple pole model. In examining the high-energy 
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behavior of un,(s), we find that for s + m and fixed n 

o,(s) * s elts ’ (1.1) 

for all n. This result is radically different from the sitatuion in the 

absence of Pomeron cuts. But it also differs from the result obtained by 

MPT,i who studied the same processes. We show that their result 

actually represents a non-leading contribution to cn,(s 1 . 

In order to prove that these cross sections do not violate s-channel 

unitarity we first rephrase the problem of the Finkelstein-Kajantie model 

in terms of a j -plane singularity above j = 1. 
14 

We then trace the fate of 

this singularity in the presence of Pomeron cuts. The result is that for 

small Pomeron-particle-Pomeron (gP,P ) couplings the singularity disappears. 

Thus s-channel unitarity is restored. We find, however, some indications 

that for larger values of the zP_P coupling the singularity may survive. 

In the process of restoring s-channel unitarity, the Pomeron cuts 

produce a softening of the renormalized ZPP vertex. From models 

where the PPF vertex vanishes as a function of the two Pomeron momenta, 

we know that the Pomeron is forced to decouple from many processes at 

zero momentum transfer, even from elastic scattering. We show that 

in RFT the J;3PP vertex is screened in such a manner that decoupling 

problems do not arise. We do this by studying the _PPR (Pomeron-particle- 

reggeon) vertex at nonzero values of the reggeon momentum. 
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This concludes our consistency tests of processes with repeated 

Pomeron exchange. As a consequence of (1.11, the sum of these cross 

sections behaves like eel(s) and is not large enough to account for the 

total cross section. In fact,when s-cm,~~l(s)/~~~~t’- 0 in RFT.i”This situ- 

ation has to be confronted with certain absorption models where aconsistent 

theory is formulated to build the total cross section only out of Pomeron 

dominated processes. 4.5 Our result implies that one has to 

consider also production processes with non-Pomeron exchange. We 

take a simple model where all particles are produced from one secondary 

Regge pole, but allow for interactions with the self-coupled Pomeron. 

The main subject we are interested in is the question to what extent the 

presence of cuts changes the behavior of en,(s). It turns out that, unlike 

the previous case, the cross sections are qualitatively unchanged by the 

presence of cuts. We discuss the relevance of this result. 

Our paper will be organized as follows: We begin in Sec. II with 

the description of a simple model whose properties are similar to those 

of the RFT model to be considered later and will serve as a useful guide 

in understanding our results. In Sec. III we describe the formalism of 

RFT that we will use later on. In particular, we will explain why we need 

a special RFT for the cross sections and cannot proceed in the way of 

iVlPT.i Sections IV, V, and VI are devoted to processes with repeated 

Pomeron exchange. In Sec. IV we compute the high-energy behavior of 

o,(s ). This requires some calculations, and we divide the section into 
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two parts: the first will contain all the technical details, and in the 

second half we present and discuss the results. Section V contains the 

proof that the Froissart bound is obeyed, and in Sec. VI we make sure 

that decoupling problems are avoided. In Sec. VII we consider processes 

with a secondary reggeon. We conclude our paper with a summary of 

results. 

II. MULTIPARTICLE PRODUCTION: A SIMPLE MODEL 

In this section we consider a simple model for multiparticle production 

with repeated Pomeron exchange. It will turn out that many features of 

this simple model will survive in the RFT of the following sections. We 

will, therefore, use this consideration as a guide in understanding the 

situation in more sophisticated models. 

Let us consider the following structure for the cross sections 

m,(Y), associated with the processes shown in Fig. 1: 

un(Y) = c0nst.U n-2 IfJ (+) 6 IY-~:Y~) 
(2.4) 

1 

where Y = In s and yi are total rapidity and the rapidity gaps between 

the produced particles, respectively. The constant U is proportional 

to the square of the EPg vertex. This factorized form of the production 

cross section is obtained if we take the Pomeron to be a simple moving 

pole with intercept one and integrate over the momentum transfers t . 
1 
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For reasons which will become clear later we generalize the number of 

transverse directions to be D (D=Z is the physical dimension). For each 

ti integration, we then have an additional factor t. P 
1 

with p = F - 1 . 

(Alternatively, such a factor t.P 
1 

could reflect a dynamical softening of 

the EPg vertex). In the following, we will call this the Finkelstein- 

Kajantie model in D dimensions. It will turn out that RFT at D = 2 will 

have the same qualitative features as this simple model at D greater 

than 2. 

One may try to evaluate the asymptotic energy behavior of (2.1) by 

scaling the rapidities: 

(2. 2) 

This leads to 

on(Y) = const. Un-2 @dxi bjl- ~;x~-$ . 
yl+(n-lkp 

(2.3) 

1 

The power of Y in front of the integral will indicate the correct asymptotic 

behavior of 9;1 only as long as the integral is a finite constant. In this 

case one finds that 

on(Y) = const. 
d7-2 

Yl+(n-4 b 
(2.4) 

and 

However, the xi - integrations in (2.3) diverge at xi=O, and the integral, 

therefore, will strongly depend on how we define the lower limit of the 

rapidity integrations. For example, if we require that all subrapidities 

become large when s - 03 , say 
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yi 2 c ~ Yq O<qSl ) 

then the asymptotic behavior of (2.3 ) becomes: 

I 
Y-l-p-(n-2)qp 

if o<p<i 

unW) - u 
n-2 

Y-l (In Ypm2 if p = 0 

(2. 6 1 

(2.7) 

For q = 1, this agrees with (2.4) (except when p = 0), but (2.7) 

shows that the decrease of on(Y) as a function of 8 becomes smaller and 

smaller, when q approaches zero, and in the limit q = 0 , the asymptotic 

behavior of on( P ) is : 

y-i-P O<p<l 

un(Y) -. u 
n-2 

Y-‘(ln UP-’ p =o 

Let us first consider p # 0 . Then (2.8) tells us that 

u,(Y) - (‘el(Y) 

(2.8) 

(2.9) 

for all n . This means that the region of phase space y. 
1 

2 cY, which 

leads to (2.4) is far from giving the leading contribution to %(Y). In 

fact, the behavior (2. 7) or (2.8) comes from the small x-region in (2.3) 

which implies that in the most favored contribution to on all but one 

rapidity is finite (they may still be large but do not increase with energy). 

In order to see how this related to the contribution (2. 3), we keep 

nonleading terms in (2.8 ): 
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u 
n-2 

on - y-l-p c +c 
[ nl n2 

Y-p +. . + c 
nn-1 

y-h-2 fp 1 (2. IO) 

(cij are some combinatorial constants ). In the first term (which is (2. 8) ), 

all x but one are small; in the second all but two, and so forth, until in 

the last term (which is (2.3) ) all x are staying away from its lower 

limit. Thus (2.10) can be considered as an expansion in the number of large 

rapidity gaps. For the case p = 0 we only note that the situation is quite 

different, and in the leading contribution (2.8 ) none of the rapidity gaps is 

driven to its lower limit. 

It is important to note that in (2. 3) the divergence of the xi 

integration at the lower end is closely related to the large ti behavior. 

In performing the ti - integration which then resulted in (2. 1) we neglected 

any ti - dependence of the vertices which would have led to a cutoff of large 

ti 
values. As a consequence of this, the yi - integration required a 

cutoff for small values. If we would, instead of this, have included a more 

realistic exponential damping of the EPJ: vertex (or simply have cut off 

the ti integration), then the remaining yi - integrations would no longer 

diverge. The results on the behavior of on would not change. However, 

it is important to keep in mind that such a crude approximation of the ti - . 

dependence, as we made in (2. i), makes the yi - integration infrared divergent. 

After finding the asymptotic behavior of on(s ), one might try to 

take a glimpse at the nature of the total cross section resulting from these 

processes. Although it is known that the behavior of %(s ) in the (n, In s) - 
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plane may be nonuniform, we do this by summing over the leading terms 

of un(s ). For the moment we are interested only in a heuristic argument, 

and that the conclusions made from this are correct will be shown later 

on. For the case 0 < p < 1 , Eq. (2. 10) suggests that, as long as U is 

small enough, the sum over the leading terms will converge, and the 

resulting Tot behaves like gel % Y 
-1-p 

. However, when U is large, 

the sum starts to diverge, indicating that the asymptotic behavior of 

2 
ot is stronger than 0~1 . In particular, a power of s might be built 

up which violates the Froissart bound. For p = 0, “tot goes like S~(CY>O) 

for any nonzero EPg coupling, which is another way of stating the 

Finkelstein-Kajantie problem. In Sec. V, we will present a more rigorous 

treatment of this problem. 

The model which we have discussed in this section seems over- 

simplified compared to RFT. Nevertheless, some of its qualitative 

features will survive and the preceding discussion will help us to understand 

the situation in RFT. In particular, we will find a strong similarity between 

RFT and our model for 2 < D < 4 , i.e., 0 < p < 1 . The most distinctive 

feature of this model is that in the leading contribution (2.8) to the high-energy 

behavior, n-2 of the n -1 rapidity gaps prefer to be finite, thus excluding 

a n-dependence of the asymptotic behavior of on . This was related to 

the possibility of divergencies at small rapidity gaps, and the divergencies 

were the result of disregarding the large t-damping properties of the 

vertices. Being aware of this problem we now turn to RFT in production processes. 
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III. RFT IN PRODUCTION PROCESSES 

In this section we give a description of RFT in production processes. 

We are mainly interested in production processes with repeated Pomeron 

exchange, but we will formulate the rules general enough to include non- 

Pomeron reggeons as well. 

The basis of our RFT is the reggeon calculus for production processes 

which has been derived in Ref. 12. It is the equivalent of Gribov’s reggeon 

calculus for the 2-2 scattering and exhibits many properties that one 

expects on general grounds. In particular, it is in agreement with the 

energy discontinuity structure required by the Steinmann relations and, 

when continued to the physical region of the crossed channels, 

exhibits the main features of physical partial wave amplitudes. The 

transition from the reggeon calculus to RFT proceeds in the same was as 

in the 2-2 scattering case. Since one is interested only in those specific 

points of (angular momentum, transverse momentum) - space, where an 

accumulation of j-plane singularities takes place, one approximates all 

quantities appearing in the reggeon calculus (vertex functions, propagators 

and signature factors) by its behavior near this accumulation point. As 

a result of this, one is left with a local field theory. As compared to the 

elastic case, there is only one new feature one has to observe in deriving 

RFT from the reggeon calculus for production processes. This is the 

fact that because of the Steinmann relations the T 
2-m 

amplitude cannot 
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be written as just one multiple Sommerfeld integral, but is a sum of 

different terms, each of them reflecting an allowed set of simultaneous 

discontinuities. Only when making approximations in the spirit of RFT, 

this sum of terms may collapse, and one is left with a smaller number 

of terms. In the particular case of only Pomerons it happens that, for 

any number of produced particles, all terms are combined to one single 

term: 

T 2-n(Y1..Yn_1’~l,.‘~nn-1) = 
(i)“-Is 

**dE e 
-yiE1 -‘n-lEn-l 

(2ni P-l 
n-i 

*.e 

* Fn(E1,.‘En-l,~~,..~n_l) (3.1) 

The partial wave Fn is the object for which RFT is formulated. In 

(3. I), we have used Ei = l-ji. where ji is the angular momentum in the 

ti - channel, ci2= -ti the momentum transfer,and yi the rapidity gap (Fig. 1). 

The factor i 
n-l in front of the integral is the result of approximating 

signature factors. The q-variables (Toller angles ), whose singularity 

structure is correctly described by the reggeon calculus,donotexplicitly 

appear in (3. I), but Fn depends on them through ci.Gj. The remaining part of 

the n-dependence is, together with some phase factors, absorbed into an 

effective complex valued ,PPE coupling constant. The Feynmann rules for a 

diagram of the partial wave Fn can be formulated as follows. (Fig. 2): 

(a) Define a direction, say from the left to the right. 

(b) Ei, ci are the sums of reggeon energies and momenta in the 
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ti -channel (marked by the vertical cut in Fig. 2.). In order to maintain 

energy and momentum conservation everywhere in a diagram, each 

produced particle carries away energy and momentum 

Ei - E+* > i-i - ,?i+l . 

(c) Put a number VO at the FPg vertex (VO is generally complex) 

and conserve energy and momentum. 

(d) For all other parts of the diagram use the rules of the 2+2 RFT.& 

Introducing a field operator 4x, t) for the Pomeron (and Gt for its her- 

mitian conjugate), the coupling to the produced particle is described by a source 

operator. For example, the nonamputated EPF vertex is 

<o 1 ~+(~~t1)~X2t2)vo~+(X2t2)~(X3t3)1 o> . (3. 2) 

A derivation of these rules has been given in the final section of the second 

paper of Ref. 12. They coincide with those used by MPT. We further 

mention that for the case when a secondary reggeon is included the rules 

(a) - (d) remain unchanged. In Section VII, we will consider particle 

production from one secondary reggeon, together with absorptive Pomeron 

cuts. We then use (a) - (d) together with (3-i). The onlg change is 

the replacement in (3. 1): 
n-l 

(i) 
n-l 

- cQ(O ), with 40) being the intercept of 

the secondary reggeon. 

In the following we concentrate on processes with only Pomerons. 

If we allow only for fully enhanced diagrams, the Lagrangian for Fnis 

given by: 
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i go 
,++ J+++ + J$- t (3.3) 

with 

W - A,++$. (3.4) 

The first term,5 o describes the propagation of the free Pomeron, J+ 

and J+q couple the Pomeron to the incoming particles, and the source 

term $V,+ attaches the produced particles to the Pomeron. The last 

term in (3. 3) induces the Pomeron self-interaction, leading to absorptive 

corrections. Without this triple coupling, we would have just the diagram 

of Fig. 1. Including go generates those of Fig. 3. Looking at this 

figure, we recognize three effects of Pomeron cuts: (i) The Pomeron 

propagator becomes renormalized (Fig. 4a). Since this is independent of 

the particle production, it is the same as described by Abarbanel and 

Bronzan’ for the elastic scattering; (ii) The EPE vertex (i. e., the source 

operator J;‘V,+) undergoes a renormalization, (Fig. 4b); (iii) Particles are 

produced out of different Pomeron lines (Fig. 4~). It will turn out that 

these contributions are suppressed at large energies. 

Before we plunge into calculations it is necessary to hesitate for a 

moment and to recall our experience from the previous section. So far 

we have been describing a RFT for the production amplitude T 
2-n’ 

but 

what we are really interested in are the cross sections u 
n’ 

Naively, we 

would go ahead and compute T 
2-n’ 

then square it and integrate over 

rapidities and transverse momenta of the produced particles. This, 
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however, is somewhat dangerous. For from what we learned in 

Sec. II, it follows that, since we have approximated all vertices by 

constants (i. e., we have no damping coming from the large t-behavior of 

the vertices), the rapidity integration will diverge. We have demonstrated 

this in (2.1) for the diagrams of Fig. i, which are described 

by our Lagrangian (3. 3) without Pomeron self -interaction. Jn order 

to obtain the correct asymptotic behavior of the on , we had to introduce 

a low energy cutoff for the y-integration, and the evaluation of the integrals 

was only possible because we knew the dependence on each rapidity 

separately. Using RFT for T2- , one usually obtains a scaling law 

which does not give enough information to proceed in the same way. We 

will, therefore, proceed in a slightly different manner. 

The idea is the following: Let us take a diagram that contributes to 

T 
2-m 

and close it on itself. As an example, the square of Fig. 1 is 

shown in Fig. 5. The result of this looks very much like a reggeon 

diagram for the 2-2 scattering amplitude. In particular, a quartic 

coupling arises as the square of the production vertex. This consideration 

holds for any diagram of T2- (in fact, not only for squares of diagrams 

but also for interference terms), and % = J dQnT2-T2- 
::; 

can be 

written as a sum of a specific class of diagrams for the 2-2 process. 

Each of these graphs has, of course, still the divergencies mentioned 

above, but now we can employ the methods of field theory 
17 

to regularize 

divergent integrations. That this leads to the correct results for on 
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can easily be checked for the simple diagrams of Fig. 5. 

We finally want to demonstrate how the 2-2 reggeon calculus for 

CJJ can formally be derived. Let us take the 2-3 process. Then the 

cross section u3 is: 

a,(Y) = K 
S2 

dyfdy2 6 (Y-yi-y2) I d2qld2q2T2,3(yi. y2> Gi> s’,) 

* 
*T 2-3 (Yj* Y2, T1’ T2) (3.5) 

with N being a normalization constant and T 2-3 as given by (3.1): 

T 2-3(YiY2~l.~2) 
dEldE2 -ylEi -y2E2 

(2rri J2 
e e F3 (EiE2;l;2L (3. 6) 

The complex conjugate to T2-r3 is obtained by taking the complex 

conjugate of the signature factors,which in (3.6) appear in the factor 

i 
‘ 

and the complex valued FPE coupling VO in F 
2+3 * 

Therefore, 

T+ 2_3(Y1aY2,Cfa92) = 

dE;dE; ’ 
. 

-yiE1 -y2E2 . ._ _ 

2 e 
e 

(2*i) 
F3(E1 E2qiq2) 

I 
::: 

v -v 9 
0 0 

(3. 7) 

We insert this together with (3.6) into (3. 5). replace in Tz,3G1.<2 by 

-cf. -c2 (T is invariant under this transformation) and perform the yi 

and y 
2 

integrations. This leads to h-functions between reggeon energies 

of T 
:; : 

2-3 
and T 

2-3 
and allows to integrate over E’ and Eg The final 

1 

answer for q 
3 

is: 
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o,(Y) = N]$$ e-yE/d~~n~~~ Fze3(m iu2ziT2) 

- F2+3(E-w 1, E-w 2, -;f# -z2) . (3.8) 

This has exactly the form of RFT for the 2-2 amplitude with reggeon 

energy E and momentum transfer zero (Fig. 6) and holds for any 

contribution to F 
2-3 ’ 

We therefore define a Sommerfeld -Watson 

transform 03(E): 

a,(Y) =z?;;; 
I 

dE e 
-YE 

03(E) , (3.9) 

and for the computation of 03(E) we can use the reggeon calculus (and 

RFT) of the 2-2 amplitude. As to the topology of diagrams for o,(E), 

a quartic coupling appears, as the product of the Fpp,P vertex in T 
2-3 

:* 
and T 

i; 

2-3 
: itis U 

0 
=Vo’V 

0 and hence real. 

This consideration holds for all on(Y), and the diagrams for on(E) 

are obtained by squaring those of T2 _ (Fig. 7). The Lagrangian which n 

generates all these diagrams is: 

% = c 
i=l, 2 

bo, - $;+it+;++i)] - uoJ;++p2++2 
1 

+J$$ +J+$+$+ 
12 12 * (3.10) 

The reason why we need two Pomeron fields li; and G2 is that we 

allow for Pomeron self-interactions in the lower and upper half of Fig. 7, 

but the only place where $ and G2 may come into contact are the quartic 
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vertex u. and the coupling to the external particles J+,+,. (Note that 

these are not all diagrams which would arise a RFT with a full quartic 

interaction (eg., the diagrams of Fig. 8 do not appear in our theory). We have only 

those diagrams which arise from squaring T2+n). With the Lagrangian 

(3. IO), or(E) is given by the sum of all diagrams which are proportional 

to LF2 . 

This completes the description of RFT for product ion processes. 

We still want to mention that the reggeon calculus for on , which we have 

derived here only for a pure Pomeron theory, remains valid when other 

reggeons are included. The main reason is that in multiplying T2-,n 

with its complex conjugate and integrating over the physical region of the 

produced particles, the whole phase structure which makes T 
2-q that 

complicated, always becomes very simple: the phase factors can be 

absorbed into the quartic coupling,which is the product of two complex 

conjugate numbers and therefore real. 

IV. HIGH-ENERGY BEHAVIOR OF on(Y) 

We now turn to the high-energy behavior of the production cross 

sections o,(Y) for fixed n. The Lagrangian for these cross-sections is 

given by (3.10). whereas the production amplitudes are described by the 

Lagrangian (3.3). The asymptotic behavior of on,(Y) as a function of Y 

is controlled by the infrared structure of its Sommerfeld Watson transform 
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on(E). In order to evaluate the infrared behavior of an(E) we first define 

the generating function 

dE) = 2 on W 
n 

with un(E) being proportional to U 
n-2 

c--(E) = U 
n-2 

En(E) . 

(4.1) 

(4.2) 

We find a renormalization group equation (RGE) for c (E), expand the 

solution in powers of U, and then determine the infrared behavior of the 

coefficient functions En(E). In addition to that, in order to see the relation 

between the behavior of the cross sections o,(Y) and the amplitudes T2+n, 

we first consider the infrared behavior of the renormalized ,PPE vertex 

and derive a scaling law for T 
2-n’ 

In order to make the reading as easy as possible, we organize this 

section in two parts. In part A, we derive and discuss the RGE’s together 

with its formal solutions. In part B, we present and discuss the results 

and the physical implications. 

A. Calculations 

As we have said before, one of the effects of p cuts in production 

processes is the renormalization of the PPp vertex. We, therefore, 

first consider the infrared behavior of the renormalized amputated PPp 

vertex I? ppp(Ei.zi) (Fig. 9a). In order to make our calculations 
- - 
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self-contained, we start by reviewing the results of Ref. 2 on the Pomeron 

self-interaction. The renormalized inverse propagator l?t’(Fig. 9b) 

11 
r = Z*rGren. 

satisfies the conditions 

r%, &*,&EN) =o 
E+=o 
k~ =0 

-&iI’ii(E, ~,cz’ ,g, EN) =I 
E=-E 

N 
i;= 0 

-1 d -?(E.I;,,a*,g,EN) 
dk” 

= -a* . 
E=-E 

N 
‘d=o 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

The renormalized coupling constant g is given by the amputated 3-point 

function (Fig. 9~): 

r 
12 = =3/2 g2 

1 unren. 

rg (E+rr*,g) 
gd 

1 
E1=2E2= 2E3=-E 

D+1 - 

N (2~) 2 

ici= 0 

(4. 7) 

(4.8) 

In (4. 8) g carries a subscript “d” indicating that it has still dimensions. 

We introduce a dimensionless coupling g through: 



-21- FERMILAB-Pub-75/55-THY 

EN 
D/ 4-i 

g = gd @‘D/4 

The RGE for IYii has the form: 

b$- Pgag - (<-a’)aol,-l+yl @,i&‘,g,E,) = 0 

with 

Pg = ENaE 
N 

&EN) 

5 = ENaENa’(EN) 

Yl = ENaE 
N 

In Zi(EN) 

(4.9) 

(4. IO) 

(4.11) 

(4.12) 

(4.13) 

The solution (t = In 5) to (4. 10) is: 

ritSE,~,a',g,EN)=ew [i-yl(g(t')) dt" II I!‘(,, i;,CU’(-t), g(-t), EN) > 

(4.14) 

In lowest order E, one finds an infrared stable fixed point 2 for g , 

such that for t - - m g(-t)-g. For a’(-t) one finds: 

a’(-t) = CY’. g-Z . (4.15) 

At the fixed point 2 , the values for y1 and z are 

E E 
Y1 = -12 > z=l+z , 

Now we consider the renormalized ,PP,P vertex F,,,(Fig. 9a) 
-u ?, 

-1 
’ rEPz: unren. 

(4.16) 

(4.17) 
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where Z 
4 

combines the renormalization constant of the source operator 

++VO+ and the wave function renormalization of the external Pomeron 

lines. Z4 is defined through: 

I- 
ppp (EiE2cl c2.a-. g, EN) =1 

.% .-,a 

E1=E2=-E 
N 

i$ = 0 

(4.18) 

which indicates that we have taken out V 
0 

as an overall constant factor 

to I-,PP,P * Further, (4.18) tells that rppp depends only on two parameters, 
Y *r 

the triple Pomeron coupling and the Pomeron slope. Both of them are 

defined above. The RGE for rppp is: 
.-A I 

5f- Pgag - (5-@‘)ao, - y4 ‘gpg(&‘i.ki~g.dEN) = 0 3 (4.19) 

with 

y4 
= EN aENh ” - 

(4.20) 

The solution to (4.19) is: 
0 

rP,,(@,> “di.g& EN) = exp + dt’ y4(g(t’)) rPpp(Ei, T;,,g(-t),a’(-t),EN) 
.x .u Ls 1 n, .., 

-t 
(4.21) 

The only new quantity is v,(g). In lowest order E , only the diagram of 

Fig. 4b contributes. Inserting the fixed point value for g , we obtain: 

Y,(Z) = p = ; . (4.22) 



-23- FERMILAB-Pub-75/55-THY 

Since in our notation (c. f. (4. 18) ) rppp is dimensionless and, hence, 
Y -b 

depends only on dimensionless quantities, rPPP on the rhs of (4.21) 
Y I 

can be written as 

E. 
rcplp +a 

i 

CT’ ‘-t$;Z, 

EN J , a-0,1, 1 . 
i 

(4. 23) 

In the limit c- 0 (t - -m) we obtain, using (4.15) for a’ (-t): 

v,m CT’ i&I;. 
r ppp(i%i, c.i> g, a.* > EN) * 5 

Y .x E-0 
rgPE 

5-=-L-J, g 
EN 

. (4. 24) 

Scaling on both sides the momentum vectors by 5 "' , (4.24) can be written 

as 

r~p_p(SEi,SZ’2i;i,g,a’,EN) - c?rEpF 2.3, E 
( - I 

. (4.25) 
5-O 

The important result of (4.25) is that the ,PP,P - vertex which in the absence 

of Pomeron cuts was a nonvanishing constant, is now screened and vanishes 

as 5 - 0 [note that p> 0 from (4. 22)]. 

In the same way one derives scaling laws for the Pomeron - n particle - 

Pomeron vertex (,PnPE) (Fig. IOa). With the definition 

r 
CnPP = Z4-nZ11-n rPnPP.unren. ’ *I I I’ 

(4.26) 

the result is: 

r PnPP(EEi. Ez’2 iii, g. d, EN) - 
-. -u 5-O 

(Y ’ k :,k. 
----Q-,g ,I, 1 , 

EN 

(4. 27) 
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In order to obtain a scaling law for thephysicalpartial wave Fn, we 

observe that in the leading contribution only one Pomeron couples to the 

18 
incoming particles, such as illustrated in Fig. 10b. The expression for 

the partial wave Fn is then: 

F n+2(Ei+) = Ni[~iicEi>~i)]-iVonFpnpp(Ei,i;i)[ri~En+1,i;n+l)]-iNi. 
‘* -” 

(4.28) 

Formula (4.27) yields the scaling law for Fn+2 : 

F 
nP+(n+l)(v,-1) 

n+2(@i’Q EZO t; @n+2 (&-’ q) . (4.29) 

Transforming via (3. i) to rapidities, we obtain: 

T 2-cn(Yi’ <) - 
s yP-ln-i HP+yl 1 

Y-m I 

zdEiemEi:. ;n(2,yZ @‘g 

i=l . 

=Y 
P-(n-l)(P+v,l 

T 

We finally mention that the parameters yl, z, and p have been 

calculated by other methods then the e-expansion. 
l9,20 The values 

obtained in the high-temperature expansion are: 

1, - 2- YIC1, 2SZS2, 
2 

+ .5 2p + 2y 
1 

+z,z. 
3’ 

(4.31) 

After discussing the properties of the production amplitude TZen , 

we now turn to the cross section dE) and its RGE. According to the 

Lagrangian (3. IO), o(E) depends, in addition to (g,,a,‘) and (g2,(Y2’) on 
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the renormalized quartic coupling U . The renormalization of g. 1, ay, is 

independent of U and, hence, the same as described above. For the 

definition of the renormalized quartic coupling U , we define the amputated 

Green’s function F 
22 

for the process Pomeron 1 + Pomeron 2 + Pomeron 

1 + Pomeron (Fig. ila) 

rz2 = z2r22 
1 unren. 

and set 

(4. 32) 

i-22 (Ei> 1; i> ui’, t+U. ENI 
S=E2=E3=E4=-EN/Z= (2;+j . 

ki=O 
(4.33) 

The subscript “d” to U in (4. 33) indicates that Ud has still dimensions. 

A dimensionless quartic coupling is defined by: 

ED/2-i 

u=u N 
d a.D/2 ’ 

(4.34) 

Next we have to renormalize the source operator J+f$ and its 

hermitean conjugate. To this end we define the amputated source - two 

Pomeron vertex (Fig. lib): 

N = z-‘Z+YJ 
N 1 unren. 

with 

N (E1E2i;li;2’gi.ni0’U,EN) = 1 
Ei=E2=-EN/2 

iTi= 

(4.35) 

(4.36) 
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For u(E) (Fig. Ilc) weneed, in addition to a multiplicative 

renormalization, one (constant) subtraction, which we define by means of 

a(E) 
I 

=o . (4.37) 
E=-E 

N 

We then have the relation 

-2 -2 
u(E) = ZN Z1 uuR(E) - qrR(-EN) s 

I 

The RGE for o(E) is 

(4. 38) 

ggag, + 5 aaT + ~,q + puau+ 2yN 1 1 1 
. u (E;gi. a;I,U, EN) = +A(gix Q f>U, EN) (4.39) 

with 

YN 
= ENaEN1n zN 

P, = ENaENU(EN) 

A = -Z-‘Z-% 
N 1 NaEN%R(-EN) 

(4.40) 

(4.41) 

(4.42) 

By dimensional analysis of u(E) we find that 

which leads to 

[U-J = E-l kD (4.43) 

ca6+ ENaE 
N 

+ “;a,, + a;%, + 1 o(5E,gi,a;,U,EN) = 0 . 
1 2 1 (4.44) 

This together with (4.39) yields: 
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C tag - i=z2(p, “pi + (L-@I)aa; + yl(gi’) - Pua~f 1 - 2yN] 

d5E,gi+J,EN) = A(gi&U,EN) ~ (4.45) 

The solution to this equation is: 

~(0% q>~;,U. EN) = o(E>g (-t),a (-t),U(-t,, EN) 

[-I + 2yl (g(t’)) + 2yN(g(t4),U(tN))] 
(t*),U(t’),cui(t ) exp ’ ) [. [-I + 2Y,(rm)] 

(t”),U(t”) (4.46) 

On the rhs of this equation, we put gt (t) = g,(t) = g(t) (because gI 

and g2 are renormalized in the same way and the functional form g(t) 

is the same for both). The first term on the rhs of (4.46) is the usual 

solution to a homogeneous RGE, and the second is due to the inhomo- 

geneous term of (4.45 ). What makes the solution of (4.45), despite 

the inhomogenuity, rather simple, is the fact that A, the inhomo- 

geneous term, is a constant with respect to the reggeon energy 

EE. In solving (4.45), the only t-dependence of A enters through 

the auxiliary functions gi(t), @i(t) and U(t). This explains (4.46). 

The functions gi(t) and a;(t) are the same as in (4. IO), and the 

only new function is U(t). U is a quartic coupling, and we know 

from previous investigations 
21,22 

that these couplings tend to be infrared 
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free. In order to determine U(t) for our case we look at the pU function. 

It has the form: 

p,= ru+ O(U2) 

with 

r = : - 1 - y,“- + v,(g,) + v,(g,) + v,(g,) + v,(g,) D (4.47) 

Inserting for gi and g2 the fixed point values, this becomes: 

r = TV z-1 + 2yf + 2p . (4.48) 

These are all quantities known to us. and using the numerical values 

obtained in the e-expansion (4.16), (4.22) or the high-temperature 

expansion (4.31) we find r > 0. For example, in the E -expansion: 

r=l-: . (4.49) 

Thus the point U = 0 is an infrared stable fixed point, and for small 

5 (or t--m ) U(-t) has the behavior 

U(-t) -, Ue rt 
. (4.50) 

This result depends mainly on the sign of r , which is a function of z, 

yl, and p . Once these quantities are given (from e-expansion or high 

temperature expansion), the evaluation of r involves no further 

approximation. In the next section we will find that the sign of r has 

still another important effect. 
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Before we go on, a word might be in place about the renormalizability 

of our theory at D = 4. Our RFT for the production amplitude, as given 

by the Lagrangian (3. 3) is renormalizable at D = 4 just as the RFT with 

a triple Pomeron interaction for the 2- 2 scattering. But the RFT for 

the cross sections, as written is (3. iO), has lost this nice property. 

In fact, if we were to compute any Greens function away from the 

infrared limit, which has a quantic coupling in it, we would have to 

introduce an infinite number of counter terms, depending on U and g., 
1 

in order to avoid infinities. This is again the result of taking constants 

for all couplings and disregarding damping properties for large t-values. 

However, in the infrared limit it has been shown by Bardeen et al. 
22 

that only a very limited number of interaction operators can possibly 

play a role,and in our theory it is only the operator IJIJI~$~$~ G2 . 

Now (4. 50) shows that this operator goes to zero in the infrared limit, 

and the quantity r which determines its infrared behavior is given 

through the quantities z, ~i’p. Each of them is computed in a theory 

that is renormalizable D = 4. This is why (4. 50) is valid even at D = 4, 

and all results of this section can be continued up to D = 4. 

Our next step is to determine the infrared behavior on(E). To 

this end we expand the rhs of Eq. (4.46), which, as it stands, is valid 

for all t, in powers of U. In doing this we have to assume that this 

expansion converges, but since our theory is infrared free with respect 

to U, we can choose our U = U(0) small enough such that a convergent 
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perturbation expansion exists. We then write the 1 hs of Eq. (4.46) as a 

power series in II [c. f. (4. Z)], and on the rhs we expand all functions in 

powers of Ult) (the function U(t) depends on U as a boundary value U(O)=U). To 

simplify our consideration we take g, = g, to be the exact fixed point 

values,such that the function g (-t) on the rhs of (4.46) becomes a constant. 

(However, our results would be the same if g1,g2 are chosen to be near 

the fixed point). Equation (4.46) then becomes: 

1 U 
n- 

un+2 (5E, g .a’ > EN) = 
n 

c 
U(-t)” E n+2 (E, g a Q’ C-t)> s3) e 

(2Yi - i)t 

n 

. ew 

+ r”t*x U(t*)” An+,(g ,o’ ( t*),s)e-(2Y’-i)t’ 

n 

* exp [- />t**z von(g ) ,:(tOO)n] . 

The remaining t-dependence of En and An can be extracted by use of 

dimensional arguments : 

(4.51) 

(4. 52) En(E, g > a’(+), EJ = EN 
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An& ,a ‘(-t),EN) = E;‘2-&-t?D’2An(g , i, 1) (4.53) 

=ED12-Q 
N 

-D/2e-tzD/2 
An& , 1,1). 

So far, equation (4. 51) together with (4. 52) and (4. 53) is valid for 

all values of t. We now consider what happens for small 5 (t + - a). In 

this limit, we know that 

U(-t) - Uert (4.50) 

I 
0 

-t 
dt’U(t’)n -U” $ [ertn-11. (4.54) 

So the U dependence on the rhs of Eq. (4.51) becomes fairly simple, and 

and if we equate the coefficient of Un on both sides, we find that 

0 n+2(5Esg ,a’,EN) - e 
.rt(k-l ) 

,(4. 55) 
5-O 

where the constants c 
nk 

are combinations of y ,C (E/EN,g , I), and 
on n 

A,(g , i,f). Finally, putting w = EE, we have: 

E n+2(W.g,a’,EN) - w 
r(k-1) 

(4. 56) 
w-0 

We can transform to rapidity and obtain 

on+2 (Y) - oepwn [ Fnl +?in2 Y-‘+...+ znn+lY-“r]. (4. 57) 
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This is the key result of the calculations of this section. 

Before we turn to a discussion of this result, we would like to 

point out that the infrared behavior (4.55) of &n+2 strongly depends on 

how U(t) approaches its fixed point value. For example, if (3, = c U2 + 0 (U3) 

has a double zero at U = 0 (i. e. r = 0)) then U( -t) has the form: 

w-t) = 1 & , 

and the analogue to (4.56) would be 

cr n+2 b) - u 
2y1 -i+z D/2 

(In a)” . 

(4. 58) 

(4.59) 

This would have been, for example, the result in the absence of cuts at 

D= 2. 

B. Results and Discussion 

After these rather long calculations let us pause for a moment 

and contemplate what we have achieved. We first derived a scaling law 

for the partial wave amplitude Fn (4. 29) and the scattering amplitude 

T 2’n (4.30). If we use this result to evalute the cross section on, we 

obtain: 

2p-(n+i)(2P+2yl+D/2 z-i)-1 
cr 

n+2 
-Y (dxi dDki) 

- 6 (1 -xxi) 

T 2-n+2 (qq 2 2 (4. 60) 
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with xi= yi/Y.This is the result of MPT in Ref. 1. However, we know 

that the xi-integration is divergent at xi = 0, and, therefore, only if 

we restrict the xi to be greater than some finite cutoff, say 

xi 2 a ( yi 2 a Y), is the rhs of ,eq. (4.60) defined. Any energy-dependent 

cutoff would introduce further energy dependence of the integral in (4.60), 

over which we have no control. 

Since we anticipated this danger, we developed our RFT for the 

cross sections. The result for on is written in (4. 57): 

(T n + 2 (Y) - Del (Y)U” [ En1 + Cn2 Y-’ + . . . + Icm+l y-nr] ’ (4. 57) 

The most prominent feature of this is clearly that the asymptotic 

energy behavior of (T is the same as for 
n 

o 
el’ 

We have kept the 

nonleading terms because they show the resemblance to our simple 

model in Section II. (2.10). Let us take, for example, the last term 

in (4.57). It has just the same behavior as obtained in (4.60 ), because 

Y 
ZP-(n+i)(2P+2yl+zD/2-i) 

=Y 
i-2yf-zD12 

-nr 
y 1 (4.61) 

and Y 
I - 2yl - z D/2 

is the asymptotic behavior of o 
el’ 

But we know 

that the power of Y in (4.60) belongs to that configuration of particle 

production where all rapidity gaps are large. We, therefore, identify 

the last term in (4. 57) as the contribution of this region of phase space. 

As to the other terms in (4. 57). we use the analogy to our model in 

Section II. (4.57) is the expansion in the number of large rapidity gaps, 
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and the leading contribution comes from the first term where only 

one rapidity gap is large. We illustrate this situation in Fig. 12. 

We plot the rapidity distribution of the produced particles of a single 

event. Inthe leading term of (4. 57) (Fig. 12a). we have one “hole” (inorder 

to preserve symmetry, this hole can be between any two of the outgoing 

particles), in the next term, two holes and so forth. In the last term, 

the produced particles are uniformly distributed (Fig. 12~). 

Looking at Fig. 12 we make another observation. It has been 

argued 
23,24 

that high energy scattering in RFT with a Pomeron having 

intercept one can be viewed as acritical phenomenon. One of the 

characteristics of phase transitions is the simultaneous existence of 

different phases of the system. In hadron scattering, different phases 

correspond to different densities in rapidity of particle production. 

This feature is exhibited in Figs. 12a and b, where rapidity regions 

with high particle density (particle clusters) are adjacent to ranges 

with zero density (holes). This situation has to be confronted with 

Fig. i2c, which represents the last (non-leading) contribution in (4. 57): 

this type of particle production is what one would expect in the usual 

multiperipheral models. 

In all these considerations, the picture obtained from our simple 

model of Section II has served as a rather faithful guide. In fact, 

comparing the multipomeron exhange without cuts in D> 2 transverse 

dimensions with our RF’T result we find that the qualitative picture has 
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not changed. In both cases we have c - eel. (A consequence of this 
n 

is that those types of production which are present only when cuts 

are included, e.g. Fig.4c, leave no signature on on(Y)). Only at 

D= 2 the presence of cuts does lead to a change. Without cuts, we 

have from (2. 8) 

(lnY)n-2 
on,(Y) - y , (2.8) 

and in this contribution all rapidity gaps are large. Once the triple 

Pomeron coupling is turned on, we have (4. 57), and the produced 

particles prefer a very different configuration. 

Our result (4. 57) can further be illustrated by a simple counting 

rule of anomalous dimensions. If we think of production process where 

only one renormalized Pomeron is exchanged between two renormalized - 

PP? vertices, then a simple counting of anomalous dimensions *r 

coming from the Pomeron propagators (4.14) and the ,PP,P vertices 

(4. 25), leads to 

an 03 - const. 6 0 - 3 ) ’ l+r ’ (4. 62) 
i yi 

with r given in (4.48). Repeating the arguments given in Section II, 

this leads to (4. 57) and may serve as a heuristic way of tracing the 

effect of anomalous dimensions. 

In these calculations we have not included non-enhanced graphs 

which, once finite values of rapidities appear, are no longer negligible. 
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However, the fact that for large s all (but one) rapidity gaps are 

pushed down to their lower limit is dictated by the enhanced graphs. 

In other words, if we would include non-enhanced graphs into our 

calculations, then the infrared behavior of U(t) and, hence, the 

asymptotic expansion of on(Y) in (4. 57) would not be affected. This, 

again, is a consequence of the results of Bardeen et al. 
22 

This completes our treatment of the asymptotic behavior of the 

fixed multiplicity cross sections. The next problem to be adressed is 

the high energy behavior of c(Y), the sum of on(Y). One might be 

tempted to derive this from the infrared behavior of c(E) in (4.46). 

If we use for c and A on the rhs of (4.46) the scaling argument (4.52) 

together with the infrared freedom of U(-t), we obtain 

2Yi - 1izD/2 
o (5E,g ,@:r,E )- 5 

or a(Y) - oel 07 . 

(4.63) 

(4.64) 

This obviously represents the sum of the leading terms of a,(Y) in 

(4.57): 

o(Y) = Del - 1 Un-2[cn,~ +. . . Cnn +,Y--1 . (4.62) 

n 

But here again the experience from Section II provides us with a warning. 

For small U, the sum of leading terms converges and might yield the 

correct behavior of c(Y), but when U becomes larger, the sum of 
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leading terms begins to diverge,and the neglect of thenonleading terms is 

certainly no longer justified. What in fact may happen is that a new 

power of s is built up, which may violate the Froissart bound. Such 

a situation would correspond to a new singularity of CI (E) in the E-plane. 

To find the correct behavior of o(Y), we therefore turn to a study of 

possible new singularities of c(E) away from E = 0. 

V. THE FINKELSTEIN-KAJANTIE PROBLEM IN RFI 

The question whether repeated Pomeron exchange leads to a new 

singularity of o = Zen to the right of j = 1 and, hence, leads to violation 

of the Froissart bound, is actually one of the main interests in studying 

these production processes. Originally, Finkelstein and Hajantie 
II 

demonstrated that along a specific line in the (n , Ins)-phane on (s) 

grows faster than allowed by unitarity. But this is just the reflection 

of a new singularity in e(E) to the right of j > 1. In Section II we 

mentioned that when p = 0 the existence of such a singularity is 

unavoidable, no matter how small we make the ,PPE coupling. For 

p> 0, on the other hand, a small enough U might prevent the existence 

of a singularity above one. In the last section we learned that RFI 

resembles very closely to the simple model of Section II with 

p-D/Z-1> 0. So our expectation is that in our model for small U we 

have no new singularity while for large U we may still have problems. 

We will now demonstrate that this expectation is correct. The 

search for a new singularitywhich corresponds to a two Pomeron 
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bound state requires, in principle, more than just studying infrared 

properties of Green’s function, and it seems as if the tools of the RGE 

used in the previous sections are not adequate. However, the know- 

ledge of the & function provides us with enough information to ensure 

that the singularity which causes the Finkelstein Kajantie problem in 

the simple pole model, disappearsonce cuts are included. Before we 

start any calculations, let us sketch the main idea, following Gross 

and Neveuf5 Let us consider the (renormalized) 2 Pomeron - 2 

Pomeron Green’s function F 22 (Ei> $2 U E$, where we have supressed 

the dependence on all other parameters. At a renormalization point 

it defines the quartic coupling U: 

u =r22(Ei>$Ks) E,=-G,2 J 
1 

(5.1) 

Fi= 0 

wg-iyUir 22 ( cEi, xi, U, EN ) = 0 , (5.2) 

with the solution 

I-22 (5 Ei, gi, U, EN) = I-22 (Ei,gi, U t-t), ENI . (5.3) 

Choosing in (5. 3) Ei =-EN/ 2, ci = 0, we have on the rhs by the definition (5. 1): 

On the other hand, we have a RGE: 

r 22 (5 Ei,l?, U, EN) = U (-t) . (5.4) 
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Now the function U(t) is, as usual, defined by: 

m(t) _ _ 
dt PuW), U(O) = u. 

This equation is solved by 

t=- u(t) & 
J U p.O 

Now suppose that p, (x) < 0 for all x> U, and the integral 

T=- a7 J dx<m 
U Pub) ’ 

(5.5) 

(5.6) 

(5. 7) 

converges at infinity. Then it follows from (5.6) that U(t) has an 

infinity at t = T. But because of (5.4), U(T) = m implies also 

r22 (-eT EN/2. 0, U, EN) = m . (5. 8) 

This shows how a singularity inr 22 
can be traced in the behavior of 

%J. 
In the following we will use this method, in order to compare the 

question of new singularities in the Finkelstein-Kajantie case with our 

RFT model. 

Let us first examine the p, -function in the absence of triple 

Pomeron interactions. Then only the graphs of Fig. 5 contribute to 

a(E), andl? 22 
1s given by: 
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r22 (Ei,%i, @I, Udo) unren = F22 (Ei,+‘,Ud)ren 

(5.9) 

‘do = 
D/2 - 1 D/2 

1 _ udo $ (‘“1 +g2)’ - Ef - E2 1 d-““+j(;j 
and, following (5. I), 

Ud = (5. IO) 

In (5.9) and (5. IO), we have given U a subscript d in order to indicate 

that U still has dimensions. Using the dimensionless combination 

u EW2-1 

TJ= dN 
(2,Dl2 

. (5.11) 

we obtain for the (3, function the exact form: 

where 

(3,: 4-f U-U2K 
i ) 

K=F[2-:)(;) D’2 . 

(5.12) 

We have plotted the behavior of p, in (5. 12) in Fig. 13 for both 

2<D<4andD=Z. Using the arguments given above we note the 

following: 
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(a) 2<D<4. 
%I 

has two zeroes at U = 0 and UC > 0, the point U = 0 

being infrared stable. If the physical value U is chosen to be in the 

range [ 0, UC], the effective U will be driven to zero. For the 

physical U> Uc, the effective U moves to the right, and according to 

our argument above, there exists a value T for t such that U(T) = m, 

and a singularity at E < Oor j > 1 exists. All this can be madeexplicit by 

solving the equation (5. 5): 

D/2 - i 
- (D/2 - 1) t 

u(t) = K 
e 

D/2- 1 
KU 

-l+e-(D/2-W ’ 
(5.14) 

and choosing for U values within [ 0, UC] or U > UC, resp. (UC -(D/2 - 1)/K). 

(A closer look at (5.14) with 0 <U <U tells us that even in this case a 
C 

pole exists, if we allow for complex values of t. However, one can show 

that this corresponds to a singularity of I 22 
on an unphysical sheet of 

the E-plane, as long as 2<D< 4, and, therefore, it is of no interest for 

us). 

(b) D = 2. We start with case (a) and let D approach 2. Since the 

value of UC = (D/2 - 1)/K goes to zero, the interval [O,Uc] shrinks to 

zero, and at D= 2 there are no values for U left where U(t) would not 

encounter a pole. Solving again (5.5): 

U(4) = u 
1+KUt ’ (5.15) 

we see that for any value U a pole occurs at 
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1 
t=-E or E-et 

-i/KU 
=e (5.16) 

Since E= 1 -j = - 5 EN/Z. this singularity lies to the right of j = I: 

E 
EN 

=I+- e -i/KU 
2 

(5.17) 

(It is important to note that, as a consequence of our method of 

regularizingdivergent integrals, Eq. (5.10) and (5.17) describe the 

physical situation reliably only for /El< EN. But this is all we need for 

our purpose. ) The results from (a) and (b) agree exactly with what we 

had anticipated in Section II. 

Now we want to see to what extent the situation changes when a 

triple Pomeron coupling is present. In the last section we discovered 

a close similarity between our RFT model and the Finkelstein-Kajantie 

case for 2 < DC 4 transverse dimension. This leads us to the expec- 

tation that the situation of our RFT model will be similar to case (a) 

above. That this is correct follows from p, (Fig. 14) which we studied 

in the last section. We found that the slope of p, at U = 0 is positive 

and different from zero, for 2 < D < 4 as well as D = 2. This, together 

with our argument given above, guarantees that there exist a range of 

values U such that the effective coupling constant U(t) is driven to 

zero without encountering a singularity. For the physical U being 

within this range, no new singularity is generated, and violation of 
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s-channel unitarity is avoided. This proves that in our RFI the 

Finkelstein-Kajantie problem no longer exists. 

Having ensured the existence of a range of U-values, for which 

unitarity is obeyed, one still may ask what happens if U becomes 

large. Before we try to find an answer to that question, we first 

introduce a slight modification into our theory which will not affect 

any of our previous results on on (Y) but will allow us to continue our 

theory to D = 4 dimensions. As we said in the previous section, the 

RFT given by the Lagrangian (3.10) is not renormalizable at D =4, 

although the infrared behavior of cr (E) and on(E) remains valid at 

D= 4. But now we want to know a little bit more than only the infrared 

behavior of U(t) and would like to determine the p-function at least to 

2 
order U . The sickness of our theory at D = 4 becomes already 

visible in the absence of Pomeron cuts: the U2-term in the p 
U 

function in (5. 12) is not defined at D= 4, since K (5. 13) becomes 

infinite. We can avoid this by including another term into the bare 

Pomeron trajectory and propagator 
26 

up(t) = 1 +dt +a &t2. 
0 00 

This changes boi in (3. IO): 

(5. 18) 

VJl, - a,“‘0 V2$it* v ‘Gi- Ao+i$it , (5.19) 
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and makes the theory renormalizable at D = 4. When applied to the 

Finkelstein-Kajantie case, this theory reproduces the correct results for the 

whole interval 2 C D c 4. In the presence of a triple Pomeron coupling 

it has been shown 
26 

that the t2-term in (5. 18) does not affect the infrared 

behavior of g and (Y’, and thus, had we included this term into our 

previous calculations, none of our conclusions would have changed. 

Now our theory with (5. 19) for GCoi in (3.10) is renormal- 

izable at D = 4, and we start considering p, at D near 4. Because 

of the presence of the triple Pomeron coupling, it is now no longer 

possible to compute the exact @U-function. However, we know that 

for E = 4 - D small, the effective triple Pomeron coupling is small, 

and P, will not too much differ from the case without a triple Pomeron 

vertex. In the appendix we show this in some detail. Then the situation 

can be described by the p-function of Fig. 13a: there is a range [0, U ] 
C 

for which the effective coupling constant U is driven to zero, and no 

singularity occurs. For U > UC, a singularity appears. We conclude 

from this that in the neighborhood of D = 4, our RFT model contains 

still a new singularity when U is large enough. 

If we go away from D = 4, we loose the control over the large U 

behavior of p,. All we know is that the slope r of p, of U = 0 remains 

positive and nonzero all the way down to D = 2, which proves the 

absence of a singularity as long as U is small enough. Whether the 

singularity associated with large U survives cannot be decided. 
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Before we turn to a discussion we have to add one missing link to 

our argumentation. The argument that we have made about the existence 

or non-existence of a singularity applies to the 2 Pomeron + 2 Pomeron 

Green’s function F 
22 

and we have to make sure that in going from P 
22 

to o(E) the situation remains unchanged. It is clear that if I 
22 

has 

no singularity c(E) will have none either. On the other hand, if Pz2 

becomes infinite for some value of its external energies and momenta, 

this singularity will not be washed out by going from I 
22 

to c(E). 

One verifies this by taking a look at Eq. (4.46) which expresses o(E) 

in terms of the effective coupling U(t). The singularity of I”’ was 

found to arise when U(t) becomes infinite. In (4.46), an infinity in 

U(t) will, in general, also lead to a singularity of y, [g(t ), U(t )I 

and, hence to a singularity of CJ (E). 

Let us now discuss some implications of our results. First we 

notice that our RFT model has again the same qualitative features as 

our simple model with p = D/2 - 1> 0 of Section II. It is only the point 

D= 2 where the simple pole model becomes very peculiar, while RFT 

retains the same behavior that it had for 2 < D< 4. The nice consequence 

of this is that RFT at D= 2 obeys the Froissart bound, provided we take 

the FP,P vertex (the quartic coupling U is the square of the gP,P 

vertex) not too large. This taken to be the case, the asymptotic 

behavior of c(Y) is given by the infrared behavior of IJ (E), namely 

(4.6X), (4.64): 
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o(Y) - Oel(Y). 
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(5.20) 

Since in RFT uel (Y) < otot (Y), there is no problem with unitarity. 

The result (5.20) has an important consequence for the formation 

of the total cross section. Since c(Y) is smaller than ctot, the pro- 

duction process with repeated Pomeron exchange are not the most 

relevant contribution to c 
tot’ 

This is different from certain absorptive 

models 
5 

where the Pomeron can consistently be built up by processes 

involving only Pomeron exchange. The fact that in our model Pomeron 

dominated production processes are not sufficient to build ctot leads us 

to consider processes with secondary Regge poles, and we will do this 

in Section VII. 

The next comment we want to make concerns the consequences of 

our result for other RFI models. We have stressed the importance of 

nonzero anomalous dimensions, resulting from the Pomeron self 

interaction. This leads to the expectation that in infrared free RFT’s 

(weak coupling Pomeron), where such anomalous dimensions do not appear, 

s-channel unitarity will be violated. In fact, more detailed calculations 

for the $4 Pomeron theory (which is described in Ref. 21) show that the 

Finkelstein-Kajantie problem is not cured, and a singularity above one 

is generated for all values of C$‘Pc-coupling. This points out to diffi- 

culties exhibited in infrared free RFT’s. 
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Finally we want to say a few words about the possibility that in our 

model, if the ,PP,P vertex is large enough, we still may have a singu- 

larity above j = 1. We found that it exists near D =4 transverse dimensions 

and may very well survive when going to D = 2. If this is the case, then 

we either have to conclude that unitarity restricts the range of allowed 

values of the P,PP, vertex, or we have to search for other inelastic 

processes that might help to eliminate the singularity. Clearly,the pro- 

duction processes that we have considered are not complete in the sense 

of s-channel unitarity. Namely if we decompose the reggeon diagram 

in Fig. 15a into Bla Abramovski, Gribov, and Kanchelli, 
27 

then we 

obtain, in addition to our contribution (Fig. 15b), also the configuration 

Fig. 15~ which stands for other types of multiparticle production. From 

this point of view it may bethat singling out the production process of 

the Finkelstein-Kajantie type is just an unfortunate way of cutting the 

total cross section into pieces. This, however, are speculations,and 

calculations have to be done, before one can rely upon this. For the 

moment we will be content with having a range of values for the rP,P 

vertex where there is no need to search for cancellation mechanisms. 
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VI. THE POMERON-PARTICLE-REGGEON VERTEX 

In order to complete our plan, we have to show that the way in which 

s-channel unitarity is restored does not lead to any decoupling problems. 

We have seen that in our model the basic mechanism which reconciles the 

repeated Pomeron exchange with s-channel unitarity is the screening of 

the ZPE vertex (4. 25). This scaling law tells us that, when both Pomeron 

energies and momenta go to zero, the vertex vanishes. The form (4. 25) 

of the ZPF vertex has to be compared with another form which has been 

suggested to restore s-channel unitarity in production processes: 

rppp (t,, t,) = (tl +t2) [a +O(tf. t,)l . 
.x * 

(6.1) 

The basic difference between this and (4. 25) is that in (4. 25) the EPF 

vertex depends also on the two adjacent angular momenta. This depend- 

ence leads, via Sommerfeld-Watson transform, to inverse powers of 

In s, and it is these powers which prevent the cross sections from rising 

too strongly. 

The form (6.1) is known7 to lead to the decoupling theorems. (In 

the literature, decoupling theorems are usually derived from invlusive 

sum rules. 28 But it is possible to arrive at the same conclusions in the 

framework of multiparticle production processes ). Because of the dif- 

ference between (6.1) and (4.25), RFT has a good chance to avoid these 

difficulties. For a more detailed examination of this point, we repeat the 

argument which, when applied to (6.11, leads to the decoupling problems. 
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Instead of considering the production of n single particles via 

Pomeron exchange we now take the productions of n particle pairs, and 

assume their invariant mass to be sufficiently large. Then, for an 

appropriate choice of quantum numbers, a secondary Regge pole with 

mass t R is exposed between the two particles (Fig. 16). We now con- 

sider the cross sections 0, for the production of n such pairs with fixed 

invariant mass M2 and fixed internal momentum transfer tR+ 0. Without 

any cut corrections and using a nonvanishing FPR vertex, we clearly 

violate s-channel unitarity in the same way as in the Finkelstein- 

Kajantie case. We, therefore, have to show that the Pomeron cuts are 

sufficient to avoid this desaster. 

In order to be consistent we start with all possible enhanced 

diagrams (Fig. 17). We then isolate those which contribute to the Regge 

pole inside the particle pair (for example, the diagram in Fig. 18 has no 

Regge pole, but only a Regge-Pomeron cut, and this singularity is, ,for 

tR#o, well separated from the Regge pole),andexaminewhether they(Fig. 19) 

alone already satisfy s-channel unitarity. At first sight this seems to be 

a fairly strong demand, but a brief reflection shows that it is the simplest 

way to avoid complications. Namely, if these contributions werenot enough to obey 

unitarity, we would have to add those diagrams that give rise to the RE-cut, 

R$‘g-cut, etc. and show that their sum respects unitarity. But if we take 

the Sommerfeld-Watson transform of the reggeon energy, we obtain a 
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Regge-pole contribution, a R$’ cut, etc., and since the position of these 

singularities has different tR-dependencies, these terms appear to be linearly 

independent from each other. It is, therefore, hard to imagine how a 

cancellation between all these terms might occur. 

Returning to the EPR-vertex, we are prepared to find a screening, and 

this screening has to be strong enough. Before we start calculation, we 

point out that such a screening will not imply decoupling problems. Although 

we do not exactly know how to continue our RFT from negative tR to positive 

values (on the way tot >O 
R 

some approximations made in RFT are no longer 

valid,and new j-plane singularities emerge 
29 

), the reggeon calculus of 
n 

Ref. 12 tells us that at the particle pole (tR=m‘, and physical angular 

momentum in the reggeon channel) all Pomeron cut contributions must 

decouple, and only the bare EPR vertex survives which we take to bedifferent 

from zero. The decoupling of all cut contributions at physical angular 

momentum is part of the reggeon calculus for the production amplitude. 
12 

We are now going to show that our RFT model does exactly what 

we expect, namely the ZPR vertex is screened for t R+ 0, and the 

screening is strong enough. From a formal point of view, the existence 

of this screening is by no means obvious. For all scaling laws which 

have been derived in RFT are valid in the limit where all external reggeon - 

energies and momenta are scaled to zero. In our case, however, we 

consider the EPR vertex at the point where the reggeon, being on or 

close to its mass shell, stays away from zero (tR + 01, and only the 

Pomeron is infrared. 
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To see why nevertheless an anomalous dimension is built up, we 

recall that the orgin of an infrared anomalous dimension is the accumulation 

of infrared divergencies. We, therefore, start by considering infrared 

singularities of some simple diagrams that contribute to the PPR vertex. 

We take the reggeon mass tR to be negative and nonzero, and examine 

the limit of vanishing Pomeron variables (Ei - 0, cl+ 0). We will find 

that in this limit an accumulation of infrared divergencies occurs, and 

that we can separate certain digrams which yield the most singular 

contribution (Fig. 20). 

The simplest diagram is shown in Fig. 21a and consists of a single 

(w. k) loop integration. A singularity of this integral occurs if two (or 

more) singularities of the integrand pinch the integration contour, and 

using the standard techniques of Ref. 30, we find two infrared singularities. 

The one is the two-Pomeron cut and arises when the poles of the two 

Pomeron propagators pinch, the other is generated by the simultaneous 

singularities of all three propagators and occurs only if the reggeon sits 

on its mass shell, i. e., 

2 
E2= 1 -cuR(k2) . (6. 2) 

For both these singularities the relevant region of integration is 

that of small o and I;, i. e., both Pomerons are infrared ,and the internal 

reggeon is close to its mass shell. A similar result holds for the diagram 

of Fig. 21b: the most singular behavior is obtained when (6. 2) is fulfilled, 
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and in order to make the integral singular, all internal Pomerons have to be 

infrared and the internal reggeons close to mass shell. 

In Fig. Zlc, we have no more infrared singularities than in Fig. Zla, 

because the 22 loop produces no new singularity at El = 0 , cl = 0 . 

Thus it has the same infrared behavior as Fig. 21a and only leads to 

(finite) renormalization of the RZR vertex in Fig. 21a. In the same way, 

a self energy correction along the reggeon line (Fig. 21d) only produces, 

when compared to Fig. 21a, a new singularity in E2 , c2 (the reggeon- 

Pomeron cut), which is well separated from the Regge pole. It 

yields no new contribution to the infrared limit El-O. z,-0 . These two 

examples show that a Pomeron, omitted from the reggeon line, does not 

enhance the infrared singularities and the most singular diagrams are 

those of Fig. 20. 

We are now going to describe a theory that takes into account all 

diagrams of Fig. 20 and, to leading order, will give the correct infrared 

behavior of the ZPR vertex. We expand the Regge trajectory around its 

value at tR = -Q2 : 

aR [(Q+k)‘l = a A [Q21 + P’ [(Qf k)’ - Q21 

= aR [Q’] + 2p’ t$.;+ p’ k2 , (6. 3) 

and drop the term p’ k2, because only small values of z are important 

for the infrared behavior. Our Reggeon propagator thus becomes: 



-53- FERMILAB-Pub-75/55-THY 

GR = i [E - (@R(Q2) - I) - 2~’ Q . < 
-1 

+ ie] 

= ~[E-R -2p’t3.2 + ic]:’ (6.4) 

For the Pomeron we use the same propagator and selfinteraction 

as before. Interaction between Pomeron and reggeon takes place via a 

Pomeron + reggeon - reggeon vertex function, approximated by its value 

at zero Pomeron momentum and Q2-reggeon momentum. The reggeon 

calculus of Ref. 12 tells us that this coupling is again purely imaginary. 

The Lagrangian for this theory is (Fig. 19): 

% =Lo- i$ $1~4 (4 + ++) + + r+++?~ - [i -aR(Q2)] c$+cj 

- [q’4+:.~ $+h.c.]- iWo++e+o. (6.5) 

where $-, (given in (3.4)) is the free Pomeron part, $ and 6 are field 

operators for Pomeron and reggeon, respectively. The EPR vertex is. 

as before, given by a source term V. $+ $. For the term 

[I -e R(Q’)] o+e we use the idea of Abarbanel and Sugar 31 and shift the 

reggeon energy by replacing o - exp [ it (1 - aR (Q2))] 4. 

As a result of this, the “intercept” of our reggeon is zero rather than R . 

For the examination of the infrared behavior of the EPR vertex 

we proceed in the same way as we did before with the EPg vertex, i. e., 
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we define renormalized quantities and write down the RGE. In doing this 

we observe that the renormalization of the Pomeron quantities (field 

renormalization, slope and triple-Pomeron coupling) is independent of 

the interaction with the reggeon. Furthermore, the reggeon field and 

slope p’ remain unchanged through renormalization. because we have 

dropped the Pomeron emission from the reggeon ($ I#I +$ -interaction). 

The only new renormalization conditions are, therefore, those for the FPR 

vertex Ci. e. the V V’ 4 source term), the ZRR vertex and the 
0 

renormalized coupling W : 

r 112 r 
PRR = ‘1 PRR ; unren. “. n. 

= =-I z1/2 r 
FEPR 5 1 PPR ; unren. .x8 

r 
_PRR (EI’EZ”~z2’ 

Wd 
Ei = E2 = -EN C2njD+ 1 

zl=i;2=o 

(6.6) 

(6.7) 

(6.8) 

rzPR (El, E2 1;t, i;,, E1=E Z-E =‘* (6.9) 

-2 N 
i;,=k2=0 

In (6.8) and (6.91, we have suppressed the dependence on the 

parameters of our theory ( a’, g, 8’ , W ) and on the renormalization 

point. Wd on the rhs of (6.8) has still dimensions. We define: 

c”= LF&. 
N 

W = Wd EN 
D/4 - ld -D/4 -1 

P 

= w E1/2(D/2-1)a, W(~-D/2)P-~ 
d N 

. 

(6.10) 

(6.11) 
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The RGE for F 
$PR is: 

a 
5% -Pgag- (5-d)aQ,-pwaw ‘~~a,-(Y5-~Y1 IppR(5Ei,~~)=0 )I -. 

(6.12) 

with 

p,= E a 
NE w 

N 
(6.13) 

Pp=ENaENp= -? I($ +$) 

Y5 
= ENaENinZ5 ’ 

(6.14) 

(6.15) 

and the other quantities as defined earlier. For P, we calculate the 

lowest order contribution to I? PRR (Fig. 22) and obtain: 
*r 

P,=[(J$$) (l-5) +$ Y1] w+ -q rrD’2 I(3 - f) 
(24 

t D/2-3 

II I dx(i+x) -D/2 p2 
0 1 (6.16) 

which at D = 2 implies the existence of an infrared stable fixed point 

F# 0. But rather than evaluating its numerical value in this approximation, 

we make the following observation. Looking at the graphs that contribute 

to the renormalization of I’ PPR and I? 
ERR ’ and using our renormalization 

Y 
conditions (6. 8). (6. 9). we have: 
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Wd = Wdo=i 
112. 

PPR; unren. *r Ren. point 

Z =,I/2 r 
5 1 FPR ; unren. 

Ren. point 

(6.17) 

(6.18) 

and 

P,;[($-t)(l-~)]w+p,n.li2-Di4E~/4-1/2 

’ ENaEN 

Y5 
= z;’ ENaE 

112 

N 
‘Z1 ru,en L 

(wdozi 
9. 

) (6.19) 
unren. 

(6.20) 

At D=2, a zero of PWimplies y5 = 0 , and the solution to the RGE is: 

rPPR (5 El a 6 E2.c1>i;2> (1.3 g, W, P, EN) 

..a 

-5 
-1l2Yl r 

,,~‘(-t).~l(-t),g(-t),W(-t), EN 1 . (6.21) 

Taking E2 and c2 to zero (i. e., the reggeon on its energy- 

momentum shell) and making use of the fact that F 
EPR 

is dimensionless, 

we rewrite: 

-2 

rgPR 
EEi,0;tz’2 +‘,g,W,~,EN - 5-i’2y’$ 

i 

E 
1 

a'k 
1 

- 
EN ’ EN ’ 

-- g .W >r(-t)EN ! 
(6.22) 

The scaling function 6 approaches a finite limit as p - m . 

It is now straightforward to see that the screening in (6. 22) is 

strong enough to prevent the cross sections o for the n production of 

n pairs with fixed but large invariant mass and fixed internal momentum 
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transfer tRf 0 from violating s-channel unitarity. From (6. 22) it follows 

that the g-particle pair - g vertex has the anomalous dimensions -yl,and this 

has tobecomparedwith the dimension p for the ,PPP, vertex. From the 

discussion of the last two sections we know that the quanitity which 

ensured the restauration of s-channel unitarity was [cf. (4.47)j : 

D 
r = 2yi+ 2p + 7 z - 1 . 

Taking for (3 what is now the screening exponent of the c-particle 

pair-Pomeron vertex, namely -yi , we find that r =s D/ 2 - 1 is still 

positive, and all our discussions in the preceding sections tell us that 

there is no violation of s-channel unitarity. This completes our 

demonstration that repeated Pomeron exchange in RFT respects s-channel 

unitarity without decoupling problems. 
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VII. OTHER PRODUCTION PROCESSES 

The study of production processes presented in the former 

section was mainly centered around consistency questions. We showed 

that repeated Pomeron exchange in multiparticle production processes no 

longer violates s-channel unitarity constants, once absorption is included 

and the EPE coupling is not too large. However, the very way by which 

the Froissart bound is restored, namely the screening of the production 

vertices, led also to the result that the part of the total cross section 

which is built up by those processes is proportional to 0~1. The ratio of 

ccl to ctot is. whichever of the available numerical values for the 

critical indices one takes, a decreasing function of s , and processes with 

repeated Pomeron exchange are thus not the main part of stat . This leads 

to the question which multiparticle production processes do build up the 

increasing cross section. 

The candidate for generating the Pomeron singularity are production 

processes mediated by non-Pomeron exchange. However, we have seen 

that, at least in the Pomeron dominated production processes, the 

generation of a new singularity is strongly disturbed through the presence of 

absorptive cuts. As shown in (5.17), in the absence of cuts one can, with 

an appropriate coupling U, promote the new singularity as much as one 

likes. But in the presence of cuts, this is no longer the case, 

because, at least for a certain range of values for U, 
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we now have no new singularity at all. In this section we will address 

ourselves to the question whether the influence of cuts is always that 

strong. We will examine this in a model of multiparticle production, in 

which only one secondary trajectory (henceforth called reggeon) couples 

to the produced particles. Absorptive effects are taken into account by 

allowing the rescattering Pomeron to couple to the reggeon and to itself 

(again we take only fully enhanced diagrams). Rather than computing 

the production amplitude, we again turn directly to the cross sections 

and make use of the formalism developed in Sec. Ill. The diagrams that 

we are going to study are shown in Fig. 23. We recognize the following 

three renormalization effects: (i) The Pomeron propagator becomes 

renormalized. and this happens just in the same way as in the pure 

Pomeron theory. (ii) The reggeon propagator gets renormalized. and 

this renormalization is independent of the particle production. Hence we 

can use the results of Abarbanel and Sugar 31 who have investigated the 

interaction between a reggeon and the Pomeron. (iii) The RPR-vertex 

undergoes renormalization. This is the only quantity that we will have 

to compute. 

We take the Lagrangian: 

2. = 1 gi - uo&#$b2 +Jb;$; 
i-1,2 

fJ4142. (7.1) 

with (cf. (3. 3 1 for the Pomeron part I 
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aei =& pui -dv *,‘*v y. - 1 + 
0 L 0 4Ji vi - + +pi + -1’) 

+; @+Y’ 
u- 

R o&7$i- [I- qo)lQ; 4, - $ O; $NJi + +;, (7.2) 
0 

Here vi, 4. 
1 

are the field operators of the Pomerons and 

reggeons, respectively. Shifting the reggeon energy by the substitution 

4. - e 
i[l - aR(0)] t 

1 pi ~ (7.3) 

we eliminate the term [i - cR (0) or ei in 2 i, ie. we shift 

the reggeon intercept to zero. This is possible only because the reggeon 

number is conserved. 

Now we can proceed in the same way as we did for the Pomeron 

and examine the infrared behavior of on (E) , which is related to 

on (Y) via 

mn (Y) = s 
2aR(0) -2 1 

-I 2Tll 
dE eeEYon(E) (7.4) 

The key point is again the infrared behavior of the quartic coupling U , 

Defining the dimensionless coupling U by 

‘dEN 
D/2-1 

U=(a, ’ 
R 

we obtain for the PI, -function: 

with 

p, = rRU + O(U2) , 

D -1-D h 
rR = 2 2 a& - + 2YiR + 2YdR I 

(7. 5) 

(7.6) 

(7. 7) 
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in analogy to (4.48) with ~4~’ y4R being the anomalous dimensions 

of the reggeon propagator and RPR vertex, respectively, and 

h= ENaEN 
~;l (EN) . (7.8) 

Calculating y1 R and y4R in the manner outlined in Sec. IVa, we observe 

that these two quantities are closely related to each other. In fact we 

have 

YIR + YqR = 0 (7. 9) 

in all orders of perturbation theory. This follows very simply from a 

“Ward” identity that relates the RPR vertex to the reggeon propagator: 
33 

I- RPR unr(Ei>Ei.~i,i;l) = 

dI?=~ (E, ci) 

dE E =Ei 
(7.10) 

Here F reggeon is the inverse reggeon propagator, and (‘7. 10) is 

easily understood by looking at graphs that contribute to lRPR and the 

self energy of the reggeon. The “Ward” identity (7.10) is a consequence 

of the fact that in our theory the number of reggeons is conserved at each 

vertex and that all produced particles couple to the reggeon. In a theory 

with a triple reggeon coupling, or in the pure Pomeron case there is 

no “Ward” identity. Formula (7. 10) together with the definition of 

‘RPR 
-1 

= ‘4R 
r 

RPR; unren. 
(7.11) 
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r RPR (EiE2T;11;Z) 
1 

Ei=E2=-EN 

‘;; = iT2 = 0 

r reggeon : z . rruengrgn 
1R 

d iFreggeon(E,r) E =-EN = i 
dE 

i;=o 

=E a 
‘iR N EN 

lnZdR 

‘4R 
= EN aE 

N 
ln Z4R 

(7.12) 

(7.13) 

(7.14) 

(7.15) 

(7.161 

leads directly to (7. 9). We then find that in (7.7 1 the anomalous dimen- 

sion associated with the reggeon propagator is cancelled by the screen- 

ing of the production vertex to all orders of perturbation theory. Finally, 

we have to determine the function h in (7.7). (7.8). It is the function 

which in the RGE for the reggeon propagator determines the infrared 

behavior of the renormalized reggeon slope (the analog to 5 for the 

Pomeron). If the renormalized reggeon trajectory is to remain 

linear near t = 0 , then h , evaluated at the fixed point values for all 

coupling constants, has to vanish. In fact, Abarbanel and Sugar found 

a solution to the reggeon-Pomeron interaction. where the renormalized 

reggeon trajectory is linear near t = 0 , and the value of h 

corresponding to this solution, is zero in their approximation (first 
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order E -expansion). 34 We expect that if this linear solution survives in 

higher order E , then h will remain zero. Therefore, the coefficient 

rR o,f U in (7. 7) vanishes at D = 2 , unlike the Pomeron case (4.47), where 

r#O. This is a nonperturbative result. 

As a result of this, the function U(t) will have a different form than 

in the Pomeron case (4. 50), where r was nonzero. In the present case 

p, = a U2 + 0 (U3) , (7. 17) 

and a must be negative. To prove this, let us assume that a > 0 . Then 

U = 0 is an infrared stable fixed point, and U(-t) has the form: 

U(-t) = u 
l-aUt ’ 

We stated in Sec. IV. (4. 58) and (4.59) that this leads to 

On+2 (w) - w 
2yR-1+D/2 

(lnw)n. 

(7.18) 

However, a closer look at the coefficient of Gn + 2 teaches us that, 

for a>O, the sign alternates as a function of n . Thus positivity of the 

cross sections, which is an input into the construction of RFT for on , 

tells us that (7. 18) with a > 0 is not possible. So let us take a < 0 , and 

assume that p, has no higher terms. Then (7. 18) is the exact behavior 

of U(t) and (7. 19) that of an . Furthermore, (7. 18) indicates the existence 

of a pole at tL-- 
aU . 

Finally, if p, in (7. 17) has further terms that 
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lead to a second zero of p , then this zero at 7 is infrared stable 

and U(t) gets driven to that point: 

U(t) - iT + (U -7) e 
-b t 

, (7.20) 

t-m 

where b is the slope of p, at ?? . With this we go back into (4. 49) and 

again find a behavior like (7. 19). We, therefore, conclude that (7. 19) 

describes the infrared behavior of En , and this is a consequence of 

quite general arguments. Turning to the Y behavior of a, (Y) , we 

0 n + 2 CY) - s 
20R (O) - 2 (In Y)” (ln y)-2y Run 

Y (7.21) 

This result is the analog to (4. 57) for the Pomeron dominated production 

processes. Except for the n-independent power of lnY, it has the same 

structure as our simplemodelinSec. II with p = 0 , i. e., the Finkelstein- 

Kajantie model. This comes about, because the screening of the RPR 

vertex (anomalous dimension y4R) is just enough to cancel the anomalous 

dimension of the renormalized reggeon propagator ( ~1~). What then 

remains in the shrinkage, and since we have used the linear solution 

for the reggeon, our result is practically the same as one would obtain 

in a model without Pomeron cuts. The dominant contributions to u,(Y) 

are due to that kinematic configuration where all rapidity gaps are large 

(and not only one as it was the case for Pomeron exchange). 



-65- FERMILAB-Pub-75/55-THY 

We thus have established that the effect of Pomeron cuts in those 

multiparticle production processes which are described by a secondary 

reggeon exchange, is considerably weaker than in Pomeron dominated 

processes. In fact, the qualitative behavior of o,(Y) is practically 

unchanged in the presence of cuts. As a consequence, the mechanism of 

generating a new j-plane singularity is not disturbed, and these processes 

can, even in the presence of cuts, serve as a candidate for building the 

Pomeron singularity. 

We finally want to relate our results to some other work along 

this line that has been done recently. 
6,35-37 

The effect of absorption 

in multiparticle production from a secondary Regge pole has been studied by 

Ciafaloni and Marchesini. 
6 

For o .(Y) they find a result which is similar 

to ours (7. 16). Compared to their calculations which are motivated by 

an s-channel absorptive picture, our calculations are more complete 

from the point of view of t-channel unitarity. In particular, they do not 

consider self-interactions of the absorbing Pomeron or renormalization 

of the reggeon propagator. That the conclusions are the same, despite 

the different frameworks of calculations, means that the character 

of a secondary reggeon is quite insensitive with respect to absorption 

by the Pomeron. 

Having established that the presence of Pomeron cuts does not 

destroy the mechanism of generating a new singularity in u (E) and 

assuming that, for an appropriate value of the RPR-coupling, this 
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singularity corresponds to the Pomeron, one might ask whether these 

processes can account not only for the correct position of the singularity 

but also for the power of (In s) that are required for c in RFT. 
tot 

Within our calculations, an answer to this requires a study of the nature 

of this singularity (if it is a simple pole, no (In s)-factors would arise), 

and our knowledge of the pu-function is not sufficient for this purpose. 

On the other hand. Caneschi and Jengo 35 have studied absorptive 

corrections to the cut Pomeron, and identifying this with the singularity 

built up by multiparticle production processes, their results may shed 

some light on this question. They claim that they can construct a 

solution which yields the same behavior of the total cross section as 

that derived from the study of 2-2 processes. 

VIII. SUMlVLARY 

In this paper we have confronted RFT with one of the most 

serious tests of s-channel unitarity that have failed in the past for 

Pomeron pole models. The constraint we have studied is that following 

from multiparticle production. We find that, in the presence of cuts, 

processes with repeated Pomeron exchange no longer violate the 

Froissart bound, provided the P,Pz coupling is not too large. However, 

we qualify this result by giving some indication that a two Pomeron bound 

state of j>l can still be formed, if one takes the P,Pg coupling large 

enough. We do not know whether such a bound state can be eliminated by 



-67- FERMILAB-Pub-75/55-THY 

other types of production processes, or whether its possible existence 

imposes a restriction on the value of the EPE vertex. 

In the process of preserving s-channel unitarity all on(s) are 

forced to behave asymptotically like ccl , the physical picture emerging 

from this being that mainly only one large rapidity gap is opened between 

the produced particles. The rapidity distribution of a single event will, 

therefore, exhibit large fluctuations. This is in agreement with the idea 

that particle production at high energies resembles a system being at a 

phase transition. 

The basic mechanism by which violation of s-channel unitarity is 

prevented is the screening of the :Pc vertex. By opening this vertex and 

studying the PPR vertex at nonzero reggeon momentum we show that % 

decoupling problems do not arise. 

We then pointed out that in the case of particle production by a secondary 

Regge pole the presence of Pomeron cuts does not lead to as drastic changes as 

in the Pomeron dominated processes. Namely the qualitative behavior of 

on(s) remains essentially unchanged once cuts are included, and the 

produced particles have still a uniform rapidity distribution. This indicates 

that even in the presence of cuts these processes can generate a new singu- 

larity which can be promoted for any finite coupling. 

In this paper we have mainly been concerned with the question 

whether RFT with a Pomeron whose intercept is one passes a strong 

test imposed by s-channel unitarity. But at the same time we have gamed 
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some insight into the mechanism in which the bare Pomeron might be 

built up. One of the most important questions that have to be asked in the 

future is why the Pomeron singularities actually is at one. It has been 

suggested that this reflects a underlying structure of hadrons and hadron 

dynamics. But it is also possible that the full content of s-channel 

unitarity does not allow for a Pomeron intercept other than one. We hope 

that our results might be of some help for future investigations along this 

line. 
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APPENDIX 

In this appendix we will study in detail the PI, function (defined in 

Eq. (4.41)) near D = 4. The Lagrangian we use is defined in (3.10) 

together with (5. 19). Our main interest is to show that near D = 4 the 

structure of 5, is nearly unchanged through the presence of the triple 

Pomeron interaction and that the results holding in the absence of the 

Pomeron self-interaction carry over. To this end we compute p, 

(which is a function of U, a and g*) up to order g* and U2. 

The Lagrangian in (5.19) contains, in addition to the those para- 

meters whose renormalization has been described in Section IV, the 

new parameter a . 
0 

Following Ref. 26 we define 

il? ** (E,k2.a’,g,a,EN) =a 
E=EN d 

(A. 1) 

I k*zO 

and introduce its dimensionless version: 

EN 
a=cu’ *a d’ (A. 2) 

The RGE for any Green’s function contains an additional p-function 

which describes the change of a as a function of EN: 

Pa (g, a) q EN aEN a (EN). (A. 3) 
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To first order in E, B, is 26 

d Pa = a - 64T , 

and P 
g 

and C/D are the same as in the theory without the k4-term 

in the Pomeron trajectory. The function (3, has the form: 

P, = -r(g*)U -C(g2,a)U2 (A. 5) 

with r from (4.47). 

Before we turn to the actual computation of C(g*, a) we note the 

following. In order to solve the RGE for any Green’s function (e. g, l?**) 

we search for the solution of the auxiliary functions 

dgo : _ p Lg(t) 
dt g ’ 

a(t)1 ,g(O) = g 

da0 = - f3 [g(t)*, a(t)] , a(0) = a dt a 

duct) 
-zz 

dt - P, W(t), g(t)‘, a(t)I, U(O) = U - 

(A. 6) 

(A. 7) 

(A. 8) 

ln first order E, pg does not depend on a and we, therefore, solve 

successively (A. 6), and (A. 7) and obtain for U(t): 

dLJ 
-27 = - r U + e (t) U* (A. 9) 
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(r is also a function of t, but we know that for large t is approachs the 

constant, (4.48), and we are interested in the solution to (A. 9) for large t 1. 

The solution to (A. 9) is: 
-rt 

U(t) = 1,; - I(t) 

with 

I(t) = /ot dt’ emt’C (t’) dt’ . 

As long as I(m) is positive and finite, we have 

0 < I(m)< m 

UC = i/I(m) , 

(A. IO) 

(A. 11) 

(A. 12) 

(A.13) 

such that,for Uc i U, U(t) in (A. 10) encounters a pole. 

We, therefore, have to show that (A. 12) is, indeed, satisfied in 

our theory. The graphs which contribute to C (g‘,a) in (A. 5) are shown 

in Fig. 24. Let us first take D=4. Then we know that 

and 

P, = Kl - g3 . Kl ’ 0 

g2 (t) = 
1 

l/g2 + Ki’ t 

From (A.4) and (A. 7) we obtain 

(A. 2 5) 

a(t) = e -t [a+ K2 &,g2 +et;, . t. dt’] (K2’ O) (A. 16) 
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(A. 17) 

For small a, the contribution of Fig. 24a to C (g’,a) is of the form 

In (i/a) . positive constant, i.e. with (A. 17) 

E(t)- 1nt* positive constant. (A. 18) 

All other graphs of Fig. 24a yield contributions of the form g’ln’t, 

but since g2 - l/t [from (A. 15)] they are much smaller than (A. 18). 

Hence, Fig. 24a gives the leading contribution, and inserting (A. 18) 

into (A. li) we find that indeed (A. 12) is satisfied. When Df 4. g2 is 

of the order Ed= 4 - D and Fig. 24b-c yield contributions to ? (t) of the 

order E. Therefore, for small E, Fig. 24a gives still the leading 

term whose large t-behavior is now: 

c (t) - const > 0. (A. 19) 

Again, (A. 12) is satisfied. This demonstrates that near D = 4 the 

presence of z-cuts does, indeed, not affect the existence of a pole in 

U(t) for U > WC. 
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FIGURE CAPTIONS 

Fig. 1 

Fig. 2 

Fig. 3 

Fig. 4 

Fig. 5 

Fig. 6 

Fig. 7 

Fig. 8 

Fig. 9 

Fig. 10 

Fig. II 

Repeated Pomeron exchange without cut corrections. 

Feynman rules for the reggeon calculus of the production 

amplitude. 

Repeated Pomeron exchange with cut corrections. 

Effects of absorptive cuts in the production amplitude: 

(a) renormalization of the Pomeron. 

(b) renormalization of the ZPx vertex. 

(cl particle production from different Pomeron lines. 

A reggeon diagram for o,(E), resulting from squaring 

the diagram of Fig. 1. 

A reggeon diagram for c3(E). 

A RFT-contribution to e,(E). 

Quartic interactions that do not occur in our RFT for e 
n’ 

Green’s functions that are computed in Sec. IIa: 

(a) the P,PP, vertex. 

(b) the Pomeron propagator. 

(cl the triple Pomeron vertex function. 

(a) The P, n-particle P, vertex. 

(b) The Z-n+2 amplitude. 

(a) The 2-Pomeron-2 Pomeron Green’s function F 
22 . 

(b) The coupling to external particles N . 
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Fig. 11 

Fig. 12 

Fig. 13 

Fig. 14 

Fig. 15 

Fig. 16 

Fig. 17 

Fig. 18 

Fig. 19 

Fig. 20 

Fig. 21 

Fig. 22 

Fig. 23 

Cc) The generating function 0 (E). 

Particle configurations in 0,(Y). 

(a) The leading contribution with one large gap. 

(b) The next-leading contribution with two large gaps. 

Cc) The last contribution where the particles are 

distributed uniformly. 

The P, -function in the absence of Pomeron cuts: 

(a) for 2 <D<4 ; (b) for D = 2 . 

The P, -function when cuts are included (2 sD<4). 

Different cuttings of a contribution to ctot. 

Opening of the ,P 2-particle ,P vertex. The horizontal 

straight line denotes the Regge pole. 

Enhanced diagrams for the process 2-2 + (n-1) particle 

pairs. 

A diagram that does not contribute to the Regge pole. 

A diagram that contributes to the Regge poles in alI 

particle pairs. 

Diagrams which contribute to the leading infrared behavior 

of the ZPR vertex. 

Some lowest order diagrams for the ZPR vertex. 

Lowest order renormalization of the CPR vertex. 

Reggeon diagrams for multiparticle production via 

secondary reggeon exchange. 
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Fig. 24 Diagrams contributing to p,, which are of second order 

2 
in C and up to first order in g . 
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